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On the stability of electron plasma waves 
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Abstract. Electron plasma waves in both isothermal and adibatic electron gases are shown 
to be stable with respect to small amplitude, three-dimensional perturbations. 

1. Introduction 

Nonlinear plasma waves in a cold electron plasma are by now well known and have been 
shown to be stable (see Davidson 1971, Infeld 1972, Infeld and Rowlands 1973, 
Gribben and Parkes 1977). The same kind of waves in a warm plasma, however, never 
seem to have been investigated for stability. Indeed there even seem to be some rather 
dubious statements about their very nature in the literature. It has been suggested, for 
example, that electron plasma solitons can exist, and also that approximations are 
needed before the form of the nonlinear waves can be obtained from the governing 
equations. Both these statements are, in our opinion, incorrect and, together with the 
relevant references, will be dealt with in the Appendix. 

The plasma waves which we will investigate for stability are the nonlinear general- 
isations of the electron plasma modes with the dispersion relation 

w2=o;+const.x k2. (1.1) 

When nonlinear waves exist they propagate with arbitrary phase velocity and thus 
differ fundamentally from equation (1.1). In our analysis we will show the existence of 
nonlinear waves in adiabatic and isothermal plasmas and study their stability to 
three-dimensional perturbations. 

2. Form of the nonlinear wave 

The fluid equations governing an electron gas are 

an/& + (a/ax)(nu) = 0 

av/at+v.  au/ax=V4-(l/n)Vp 

V 2 4 = n - 1  

(D/Dt)(p/nY) = 0 (adiabatic) 

p = n  (isothermal). 

t On leave from the Institute of Nuclear Research, Hoza 69, Warsaw, Poland. 
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Here the variables have been 'nondimensionalised'. In the isothermal case the electron 
temperature T is constant, o is normalised by (T/m,)'lZ, t by U; ' ,  4 by T/e, x by A D ,  
and p by noT(o i  = 4?moe2/m,, A ;  = T/4.rmoe2). For the adiabatic case polno should 
be substituted for T in the above scheme. Boltzmann's constant has been taken to be 
unity and n, normalised to no, the unperturbed density. 

We now look for a stationary wave propagating in the x direction, and take all 
physical quantities to be functions of 6 = x - Uot only. Equations (2.1) then take the 
form (U = ( U  + Uo, 0 0 ) )  

nu = m = const. 

d 4 / d r =  ( U  - u-')du/d& (isothermal) 

= ( U  - ymY-'u-Ydu/dt (adiabatic) 

d24/d t2  = n - 1 = m/u - 1. 

These equations may be integrated once to give 

mu-iu '+mu- '+In U + M  

mu - fu' + mYu-' - ymY-lu '-'I( y - 1) + P 
( U  - ymY-'u-')' 

+(du/d[)* = (isothermal) 
( U  

(2.3) 
- - (adiabatic) 

where M and P are constants. 
In principle the explicit form of the waves could be obtained by integrating equation 

(2.3) over U, yielding a solution in the inverted form [ = [ (U) .  However, to study the 
existence of solutions it is easier to consider the phase plane diagram where du/d[ is 
considered as a function of U. This is of course given explicitly by equation (2.3), thus 
reducing the existence problem to one of plotting a curve in this phase space (du/d[, U ) .  

In this space, closed contours when they exist correspond to periodic nonlinear waves. 
For fixed values of m but differing values of M or P these contours are concentric about 
a centre. 

In the present case a centre exists for m > y"' and thus this condition must 
necessarily be fulfilled for the existence of nonlinear waves (when not otherwise 
specified y = 1 will describe the isothermal case from now on). In the immediate 
vicinity of the centre the contours are almost circular and correspond to small amplitude 
nonlinear waves, which are almost sinusoidal functions of 5. As the amplitudes of these 
nonlinear waves increase, corresponding to changes in M or P, the contours in phase 
space steepen as they approach the singularity at U = ymY-'u-Y. The corresponding 
nonlinear waves take on a sawtooth-like profile. However there are no soliton-like 
solutions since no other critical point exists. 

For m < y l / * ,  as stated above, no centre exists, so no closed contours exist and hence 
no stationary solutions which remain finite in amplitude for all 4 can exist. Yu (1976) 
claims to show the existence of soliton solutions for m < y'", but this conjecture is 
shown to be false in the Appendix. 

In summary, nonlinear wave-like solutions exist, but soliton-type solutions do not. 
Coffey (1971) has studied nonlinear plasma waves using the water-bag model. This 

is equivalent to the above if one takes y = 3. By making an expansion in amplitude 
about the centre, Coffey obtains the explicit [ dependence for weakly nonlinear waves. 
Ray (1978) has obtained somewhat equivalent results for isothermal plasmas. 
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By integrating the fourth equation of (2.2) over a period we obtain for the average 
value of U-' 

(u-')=m-' (2.4) 

for all wave solutions. Thus U must take values both below and above m, a detail that 
will be used in the following analysis. As the amplitude of the nonlinear wave tends to 
zero, the range of U values shrinks to a point at U = m. 

3. The linear limit 

We first solve for the zero-amplitude limit of the nonlinear wave, using equation (2.1) 
and writing 

n = 1 + Sn exp[i(k . x - ot)] 
v = mi, + 60 exp[i(k . x -ut)] 

4 = 84 exp[i(k . x -ut] 

k .  i, = k cos 8 

where i, is a unit vector in the x direction. 
Simple algebra yields 

(U - km COS e)'= 1 + rk2 .  

For the stationary wave o = 0, and if we consider 8 = 0 then 

kg = (1 + y k $ ) / m 2  

so that 

k$ = ( m 2 -  y)-l>O. 

We now perturb this solution, introducing 

6J =So 
k = ko + Sk 

Sk . i, = Sk cos e' 

(3.2) 

(3.3) 

(3.4) 

and this leads to 

SolSk = ( m 2 -  y ) / m  cos e'+ O(Sk). (3.5) 

Thus the problem is essentially two-dimensional. The phase velocity of the modulation 
Sw/Sk is seen to be a circle in a polar plot of V,,h(O') .  This circle touches the origin on 
the right. It will be shown in the next section that, as we increase the amplitude of the 
basic stationary wave, this circle will bifurcate, giving rise to two circles that osculate at 
the origin. This bifurcation often accompanies nonlinear waves and has been observed 
in many different nonlinear problems (see, for example, Whitham 1965, 1974). 
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4. The dispersion relation for modulations 

We now assume the existence of a nonlinear wave satisfying equation (2.2) and consider 
linear perturbations about this solution, which must of course satisfy equation (2.1). We 
assume that these linear equations have solutions of the form of a periodic function of [ 
multiplied by exp[i(k . x -ut)] and the basic problem is to find the relation between w 
and real k, that is the dispersion relation. The method to be used, which is basically an 
expansion in k, has been discussed in detail in relation to other nonlinear waves by 
Rowlands (1969, 1974) for one-dimensional perturbations, whilst three-dimensional 
ones have recently been discussed by Infeld et a1 (1978). Thus for example we write for 
the perturbed number density 

an (x, t )  = Sn ( 5 )  exp[i(k . x - UT)] 

and assume that the Sn (0, which is a periodic function in 6, may be expanded in powers 
of k such that Sn (6) = Sno + kSnl + . . . . We are using a double expansion: the first 
associated with the usual linearisation procedure is valid for Sn/n << 1, whilst the second 
is used to facilitate the analytical solution of these linearised equations and is valid for 
kL << 1, where L is the spatial period of n. These two expansions are quite independent. 
Because of the translational invariance of equation (2.1) a solution to the linearised 
problem exists for k = 0, where w = 0 and Sno= dn/d[. Thus in general we write 
w = wlk +w2kZ+ . . . . The perturbed velocity has a component Su in the direction of 
the nonlinear wave and one SU at right angles. In particular SUO = duo/d[ and Suo = 0. 
To first order in an expansion in k one obtains the set of equations 

-iolSno+(d/d[)(nSul+uSnl)+i cos 8(nSuo+uSno)=0 

-iwlSuo+(d/d[)(uSul)+i cos 8uSuo-(d/d[)(Sq51 - ynY-’Snl) 

- i  cos e(s4,- ynY-’Sno) = o 
-iwlSuo+ u(d/d[)Svl = i sin O(Sq50- yny-’Sno) 

d2S41/d[2+2i cos 8(d/d[)Sq50 = Snl 

(4.1) 

where we have written k = (k cos 8, k sin 8). Use has been made of the result (-iwl+ 
iku cos 8)(n-YSpo - yn-Y-lpSno) + u(d/d[)(n-’Spl - yn-Y-lpSnl) = 0. It follows from 
the form of Sno and Spo that the first term iszero, so that Spl = ypn-’Snl. The equations 
for the isothermal case can be obtained from the above by taking y = 1, though this 
could not have been done in the initial equations because of the In term. 

Equation (4.1) constitutes four inhomogeneous equations for the unknown 
functions S1, Sul,  Svl and ~ 3 4 ~ .  Using the form for Sno, SUO, SUO and ~ 9 4 ~  mentioned 
above, it is readily seen that the first three equations of (4.1) are trivially integrated, and 
in particular Snl may be expressed algebraically in terms of and known functions 
related to the nonlinear wave. When this form is substituted into the last equation of 
(4.1) one obtains a second-order inhomogeneous equation for This equation may 
be solved by following the method given in the papers mentioned above. In this way 
one obtains the form for anl,  Sui, Svl and Sq51 but not the value of w l .  To obtain this 
latter value one must proceed to second order in the expansion in k. Proceding in the 
manner outlined above, one obtains a second-order inhomogeneous differential equa- 
tion for S C $ ~ ,  Demanding that 64’ must be periodic with the same periodicity as the 
nonlinear wave gives a consistency condition which involves w l ( - w /  k)  and known 
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functions and may be viewed as a dispersion relation. (To first order in the expansion in 
k the consistency condition is automatically satisfied, and for this reason we get no 
condition on U' . )  In this way we obtain the result 

cos' e + 77 sin'e 2 

- 1)(1 - ~ ~ ~ / u ) y / m 2 ) ) c o s z  e 
1 m --(ydw w/k = COS e * 

770- 1 (770- 1)'ao 

1 - y(m/u)'+'/m' 

+ [m ((U) - m )  - J ]  sin' e(qo - 1) 

where: 

( ) = average period of nonlinear wave; 

an is defined by & I un  d(/2 = CY,,& +periodic F ( 0 ;  
q 0 = ~ 1 / a O - a 2 - m - ' ( ( u ' - y m Y - ' u - Y ) - ' ) ;  2 

J = ( 4 3 .  

(4.2) 

The dispersion relation for the isothermal case may be obtained from equation (4.2) by 
taking y = 1. For stationary waves with amplitudes tending to zero, equation (3.5) is 
recovered ( w / k  = SwlSk). However, for general nonlinear waves there will be two 
dispersion waves in place of one ('t in 4.2). Their topology will depend on whether the 
square root in equation (4.2) is positive or negative. This question will be examined in 
the next section. 

5. Stability 

To demonstrate stability we must show that w ( k )  is real for all 8. This will be the case if 
and only if both the sin' 0 and the cos' 8 terms in the expression within the braces are 
non-negative. The proof of the first part of this condition is very simple. Write the 
coefficient of cos' 8 before averaging as (mlu - l ) r ( m ,  U ) .  Then 

r ( m , u ) > l  if u < m  

= l i f u = m  

<1  if u > m .  

Therefore 

( (m/u - l ) r (m,  u))>((m/u-l))=O 

(see ch 2). 
The proof of the second part is slightly more involved. Denote 

s ( u )  = U - ym"-'u-' > 0 
su = ds/du = 1 + y'm y-lu"'-l > 0 

G = du/d(, A =  dx f 

(5.2) 

(5.3) 
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and now proceed to evaluate J + m ( m  - (U)) 

J + m ( m  -(U)) 

= ( S ~ G ~ ) + ~ ( U C $ ~ ~ ) = ( S ~ G ~ ) + ~ ( U S ~ G ~ + U S G G , )  

= (s2GZ)+m(usuG2)+ m/h  usG,/du 

= (s2G2) + m (usuG2) - m((s + usu )G2) 

= -(sG2(m -s))= -sG2(m -U))- y m Y - 1 ( ~ G 2 ~ - y ) .  

0 

Now 

(5.4) 

-(sG2(m - U ) )  

= - ( sG2(~sUG2+ usGG,)) = - ( S G ~ U S ~ ) + $ ( G ~ ( ~ S S , U  +sz)) 

= -$(sG4(us, - s ) )  = -$(~G~(y~m~-'u-~+ym~-'u-~))<O. 

Now (sG2u-?) > 0, and thus the LHS of equation (5.4) is negative. The proof is valid for 
y = 1 for the isothermal case. This then completes the proof of stability. Equation (4.2) 
has also been evaluated numerically and polar plots of w / k  as a function of 0 obtained. 
When the amplitude of the nonlinear wave is zero this polar plot is in the form of a circle 
passing through the origin, as may be seen from equation (3.5).  This solution is doubly 
degenerate since ko, which must satisfy equation (3.3), can take either sign. As the 
amplitude of the basic nonlinear wave increases, this degeneracy is removed and the 
polar plot takes the form of two closed curves which closely resemble circles. These 
osculate at the origin but do not touch at any other point and thus for any 0 there are two 
distinct real values of w l k ,  showing that no unstable mode exists at least for small k. 

For a cold plasma y = 0) the degeneracy of the two circles remains and one just 
recovers equation (3.5). 

6. Conclusions 

Conditions for the existence of electron plasma waves in isothermal and adiabatic 
plasmas have been given. Contrary to earlier work it has been shown that no 
soliton-type solution exists. The linear stability of these waves to long-wavelength 
three-dimensional perturbations has been demonstrated. 
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Appei-rlix 

In this Appendix we take issue with some papers on the form of the nonlinear waves that 
can permeate an electron plasma. Yu (1976) claims that equation (2.3) can describe a 
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soliton for values of U that include the singularity at 

if only m < y’”. For simplicity we will treat the isothermal case in this refutation, so 
that the singularity is at U = 1 and m must be smaller than 1. 

One way of seeing that Yu must be wrong is to draw phase diagrams (up against U). 
It is then seen that the ‘closed’ phase curve in question is such that everywhere U > m. 
On the other hand, integration of the last of equations (2.2) over a large 5 domain which 
includes the soliton yields 

L L 
(1/2L) I m/u d t -  1 = (1/2L) I dz#/dZz d t - 0  

-L -L 

and this contradicts U > m. But to locate the mistake in his solution we must look for a 
less global argument. 

In equation (9a) of the Yu reference, corresponding to our equation (2.3), different 
signs should be taken for U < 1 and U > 1 when the square root of both sides is taken. 
Thus, in our notation, assuming up(l) > 0, 

(U - u-’)du/dt = -Jm (U < 1) 
= +Jf(u) (U > 1). 

The sign change will be from + to - if up(l)<O. As f(1) is not zero, (d/dt)(u- 
u-’)du/d[ = d2#/dZ2 will have a delta function contribution at U = 1. On the other 
hand, m/u - 1 is continuous there. Thus Yu’s solution satisfies Poisson’s equation 

d2# /d t2  = m/u - 1 

everywhere except at U = 1. The same reasoning invalidates other papers by the same 
author (Yu 1977, 1978, Zhelyakor, et af  1978). 

A third paper on the subject is by Shukla and Tagare (1977). In this paper, 
nonlinear waves such as are treated in the present paper are studied by making some 
quite unnecessary approximations. The authors state that solving their equation (8) is ‘a 
formidable task’ (this equation is the second-order differential equation for n obtain- 
able from our equation (2.2)). In actual fact it is simply integrated by multiplying 
through by, in their notation, 

- (d/dt)[ U2/2( 1 + NIz + ln(1 + N I ] .  

This enables us to write the whole equation as a perfect differential and, upon 
integration, leads to an equation similar to equation (2.3). 
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